L-Band and X-Band Antenna Design and Development for NeXtRAD

S. T. Paine, P. Cheng, D. W. O'Hagan, M. R. Inggs, H. D. Griffiths*

Department of Electrical Engineering Radar Remote Sensing Group University of Cape Town, SA

*Department of Electrical Engineering University College London, UK

Email: daniel.ohagan@uct.ac.za

October 13, 2016

Outline

- Introduction
- NeXtRAD Node Geometry
- Application Requirements

2 L-Band Antenna Design

- L-Band Feed Design
- L-Band Truncated Reflector Design
- L-Band Prototype Antenna
- L-Band Antenna Results
- 3 X-Band Antenna Design
 - X-Band Feed Design
 - X-Band Horn Design
 - X-Band Prototype Antenna
 - X-Band Antenna ResultsResults

Conclusions and Future Work

NeXtRAD

In short, NeXtRAD is an evolution of NetRAD, a netted radar system which operates in the S-Band.

NeXtRAD improves upon the RF capabilities of NetRAD by:

- Fully Polaremetric (HH, HV, VV, VH)
- Multiband (X- and L-Band)
- Wireless networked nodes for large baseline separation

Figure: Basic NeXtRAD node geometry

L- and X-Band Antenna Requirements

- Dual polarised (Horizontal and Vertical)
- L-Band centre frequency $f_0 = 1.3$ GHz
- X-Band centre frequency $f_0 = 8.5 \text{ GHz}$
- Minimum 50 MHz bandwidth (X- and L-Band)
- 10° azimuth HPBW (X- and L-Band)
- 1.5 kW (L-Band) and 400 W (X-Band) peak power handling capabilities
- Be able to be mounted on a standard tripod and withstand harsh environmental conditions such as strong winds

L-Band Antenna Design

NeXtRAD Antenna

University of Cape Town

L-Band Coaxial to Waveguide Launcher Design

• Freespace Wavelength:

$$\lambda_0 = c/f = rac{3 imes 10^8 \text{ m/s}}{1.3 imes 10^9 \text{Hz}} = 230.8 \text{ mm}$$

Probe Length:

$$L_{probe} = rac{\lambda_0}{4} = rac{C}{4 imes f_0} = 57.7 ext{ mm}$$

• Waveguide Wavelength:

$$\lambda_g = \frac{\lambda_0}{\sqrt{1 - (\frac{\lambda_0}{1.705 \times D})^2}} \approx 360 \text{ mm}$$

Backshort Distance:

$$L_{backshort} = rac{\lambda_g}{4} \approx 90 \text{ mm}$$

Coaxial to Waveguide Transition Design

Figure: Coaxial to waveguide transition.

L-Band Truncated Reflector Antenna

Required Specification	Simulated Parameter
Diameter	1440 mm
Height	744 mm
Depth	290.3 mm
Focal Point	446 mm
f/D ratio	0.31
Parabolic Equation	$y = (5.60 \times 10^{-4})x^2$
$HDRM/(\Lambda_{zimuth})$	H-Pol : 10.7°
TIF DVV (Azimutii)	V-Pol : 10.0°
HPRW (Elevation)	H-Pol : 16.4°
TIF DVV (Lievation)	V-Pol : 16.6°
SIL (Azimuth)	H-Pol : 20.3 dB
SEE (Azimuth)	V-Pol : 16.9 dB
	H-Pol : 15.1 dB
	V-Pol : 15.0 dB
E/R ratio	H-Pol : 24.7 dB
	V-Pol : 30.7 dB

- 一司

Prototype L-Band Antenna Dimensions

Simulated Results of Modified Pre-fabricated Antenna

Parameter	Simulated Design
Diameter	1350 mm
Height	600 mm
Depth	370 mm
Focal Point	307.85 mm
f/D ratio	0.23
Parabolic Equation	$y = (8.16 \times 10^{-4})x^2$
	H-Pol - 13.9°
HEDVV (AZ)	V-Pol - 12.1°
	H-Pol - 19.7°
	V-Pol - 20.5°
	H-Pol - 17.4 dB
SLL (AZ)	V-Pol - 17.4 dB
SLL (EI)	H-Pol - 16.3 dB
	V-Pol - 15.2 dB
F/B ratio	25 dB

NeXtRAD Antenna

October 13, 2016 11 / 33

L-Band Antenna Prototype

Figure: L-Band antenna prototype with dual polarised circular waveguide feed

< 一型

- Due to feed blockage, physical adjustments were made to restore specified performance.
- The probe was moved forward inside the waveguide by 43.3 mm to restore required performance.

Parameter	Standalone Feed	Antenna with Feed
Probe Length	57.7 mm	56.9 mm
Backshort Length	90.0 mm	133.3 mm

Dish with Feed S-Parameter Measurements

Figure: Simulated (blue) vs. Measured (red) S11 (top) S21 (middle) S22 (bottom) parameters for optimised feed placed at the dish focal point.

NeXtRAD Antenna

October 13, 2016 14 / 33

- < A

L-Band Antenna Results

Figure: Testing setup on the roof of the Menzies and Snape buildings at UCT.

Beam Pattern Results for H-Pol

Figure: Horizontally polarised azimuth (Top) and elevation (Bottom) beam pattern. (Left) Simulated (Right) Measured.

University of Cape Town

Beam Pattern Results for V-Pol

Figure: Vertically polarised azimuth (Top) and elevation (Bottom) beam pattern. (Left) Simulated (Right) Measured.

NeXtRAD Antenna

University of Cape Town

October 13, 2016 17 / 33

	Horizontal Polarisation		Vertical Polarisation			
	FEKO	CST	Measured	FEKO	CST	Measured
Az HPBW	12.1°	12.2°	12.4°	13.9°	14.2°	13.9°
EI HPBW	20.5°	20.4°	20.0°	19.7°	19.5°	19.6°
Az SLL	-17.3 dB	-17.0 dB	-17.4 dB	-17.4 dB	-17.2 dB	-16.4 dB
EI SLL	-15.2 dB	-15.2 dB	-15.7 dB	-16.3 dB	-16.9 dB	-15.8 dB

It has been shown that:

- The measured results of the built prototype match the simulated results as expected
- A truncated parabolic dish antenna can meet all the application requirements
- Circular waveguides perform better than square waveguides when dual polarising using orthogonal probes [1]
- Feed blockage is of major concern with electrically small prime focus dish antennas ($D \le 10\lambda_0$) [2]

X-Band Antenna Design

NeXtRAD Antenna

2

X-Band Coaxial to Waveguide Feed Design

X-Band Free-space wavelength for 8.5 GHz:

$$\lambda_{\circ} = rac{c}{f_{\circ}} = rac{3 imes 10^8 \text{ m/s}}{8.5 imes 10^9 \text{ Hz}} = 35.29 \text{ mm}$$

Waveguide diameter (l_g) chosen from aluminium water pipe is 28 mm. Cutoff wavelength:

$$\lambda_{c(extsf{TE11})} = 1.706 imes \textit{I}_{g} = 47.77$$
 mm

Cutoff frequency is calculated to be 6.28 GHz. Length of the probe and backshort:

$$L_{\rm probe} = rac{\lambda_{
m o}}{4} = 8.82 \ {
m mm}$$

$$L_{
m backshort} = rac{\lambda_g}{4} = 13.09 \
m mm$$

X-Band Horn Antenna

Figure: Side view of a horn antenna.

Diameter of the antenna aperture:

$$D=rac{70\lambda_{\circ}}{ heta}=247.03$$
 mm

Length of the horn from waveguide to aperture:

$$l_{\rm h} = \frac{D^2}{3\lambda_{\rm o}} \left(1 - \frac{l_g}{D}\right) = 511.14 \text{ mm}$$

X-Band Prototype Antenna

Figure: X-Band conical horn antenna prototype with the dual polarised waveguide feed.

X-Band Antenna Results

Menzies Building Rooftop

Figure: Antenna configuration at Menzies Building rooftop.

Simulated X-Band Antenna S-Parameters

Figure: Simulated S-parameter results for X-Band horn antenna. S11 (blue), S12 (red) and S22 (green) are shown.

Measured X-Band Antenna S-Parameters

Figure: Measured S-parameter results for X-Band horn antenna. S11 (blue), S12 (red) and S22 (green) are shown.

Simulated X-Band Antenna Radiation Patterns

Figure: Simulated X-Band antenna radiation patterns. Azimuth plane (green) and elevation plane(blue) for both V-pol (left) and H-pol (right).

• • • • • • • • •

Measured X-Band Antenna Radiation Patterns

Figure: Measured X-Band antenna radiation patterns. Azimuth plane (green) and elevation plane(blue) for both V-pol (left) and H-pol (right).

	Horizontal Pol		Vertical Pol		
	Simulated	Measured	Simulated	Measured	
Az HPBW	9.3°	9.1°	10.7°	10.4°	
EI HPBW	10.7°	10.0°	9.3°	9.2°	
Az SLL	-20.1 dB	-23.8 dB	-37.6 dB	-35.9 dB	
EI SLL	-37.7 dB	-31.9 dB	-20.1 dB	-23.6 dB	

It has been shown that:

- Conical horn and circular waveguide met all the NeXtRAD's antenna specifications.
- Manageable in size and portable.
- Dual polarisation has been successfully implemented.
- Approximately 10° azimuth HPBW achieved in both polarisations.
- FEKO shows accuracy.

- The simulated results shown a close agreement to the measured results for both L- and X-Band prototypes.
- The measured L-Band prototype has an azimuth HPBW of 12.4°and 13.9°when horizontally and vertically polarised respectively.
- The measured X-Band prototype has an azimuth HPBW of 10.7°when both horizontally and vertically polarised.
- With improved manufacturing, the optimal L-Band antenna can be produced to provide almost exactly 10° azimuth HPBW as was simulated.
- It has been shown that both antennas meet the requirements and are suitable for use in NeXtRAD.

- S. Paine, "Design and Implementation of Dual Polarised L-Band Antenna with 10 Degree Azimuth Beamwidth," University of Cape Town, Cape Town, Tech. Rep., 2014.
- P. Wade, "Parabolic Dish Feeds," 1998, accessed: October 13, 2016.
 [Online]. Available: http://www.w1ghz.org/antbook/chap11.pdf

Thank you!

2